NATIONAL TECHNICAL UNIVERSITY OF UKRAINE «IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE» FACULTY OF ELECTRIC POWER ENGINEERING AND AUTOMATICS INSTITUTE OF ENERGY SAVING AND ENERGY MANAGEMENT

APPROVED Vice Rector of Education

_____ Anatoliy MELNYCHENKO «___»_____ 20___.

F-CATALOG

of elective educational components of the educational and scientific program "Electric Power Engineering, Electrical Engineering and Electromechanics" of specialty 141 "Electric Power Engineering, Electrical Engineering and Electromechanics"

of the third (educational and scientific) degree of the higher education

Approved: by the Methodical council of the Igor Sikorsky KPI (meeting protocol #____ of «___»____20___)

by the Scientific council of Faculty of Electric Power Engineering and Automatics of the Igor Sikorsky KPI (meeting protocol #____ of «____»____20___)

by the Scientific council of Institute of Energy Saving and Energy Management of the Igor Sikorsky KPI (meeting protocol #____ of «___»____20___)

Contents

A Guide to the Catalog	3
Discipline 1 for study in the second year	4
Analysis and synthesis of DC energy transmission systems	4
Methods of structural and parametric synthesis of regulators for systems with transport	
delay	5
Current trends in the integration of renewable energy sources into the power grid	7
Operating modes of wind power plants in power systems	9
Modern methods of synthesis, analysis and research of dynamic systems	11
Methods of rapid prototype testing of asynchronous electric drives	12
Modern methods of synthesis, analysis and research of dynamic systems	13
Monitoring of technical risks	14
Special issues of protection against electromagnetic effect of lightning	15
General principles of construction and management of active power distribution systems	16
Discipline 2 for study in the second year	17
Mathematical modeling of Smart-systems of alternating current	17
Methods for optimizing the study of the stability of adaptive systems	18
Advanced technologies in renewable energy	20
Modern methods and models of analysis of regime reliability of electric power systems	22
Fundamentals of system electromechanics	24
Identification of parameters in electromechanical systems	25
Mathematical modeling of power systems and electrical complexes	26
Methods and means of measuring physical quantities	27
Analysis and research of development of lightning discharge channel as dynamic system	28
Application of power electronics in active power distribution systems	29
Discipline 3 for study in the second year	30
Monitoring and diagnostics of electric power systems	30
Methods of analysis and research of complex dynamical systems	31
Promising technologies for combined use of renewable energy sources	33
Intelligent methods for assessing the technical condition and service life of electrical	
equipment.	35
Diagnosis and optimization of operation of electromechanical energy converters and	
complexes based on them	37
Methods for studying the stability of adaptive observers	38
Methods of pattern recognition in electrical systems	39
Identification of nonlinear dynamical systems	40
Mathematical modeling of systems of protection of electrotechnical complexes against	
electromagnetic effects of lightnings	42
Application of information technologies in active systems of distribution of electric energy	43

A Guide to the Catalog

1. The number and volume (in ECTS credits) of academic disciplines that can be chosen by the graduate student (elective disciplines) is determined by the curriculum, namely for the second year - 10 credits. The curriculum also indicates the semester, which teaches the elective discipline, the form of semester control, types and scope of classes.

2. Direct choice of disciplines by graduate students is carried out by means of questionnaires. Each graduate student fills out a questionnaire indicating the disciplines he / she wishes to study in the next academic year (taking into account the number of disciplines specified in the curriculum, their volume in ECTS credits and the semester of study).

3. The graduate student within a certain number can choose disciplines both from the faculty F-catalog and from the departmental F-catalog of any department of the faculty, regardless of the level of higher education (bachelor's, master's, educational-scientific), where he studies. The choice of academic disciplines offered for other educational programs is made in agreement with the head of the relevant graduating department.

4. In case of impossibility of formation of study groups of normative number for studying of a certain selective discipline, postgraduate students are given an opportunity to make a new choice during April, having joined already formed study groups. The department, which provides teaching of such elective discipline, can provide an opportunity to study the chosen discipline through individual consultations, using a mixed form of education and so on.

5. At the request of a graduate student who has chosen a certain elective discipline, he / she is allowed to join the group in which this discipline is taught within another educational program, including another faculty / institute. The relevant decision on the disciplines taught at the faculty is made by the dean of the faculty / director of the institute. With regard to disciplines taught at another faculty (institute), the relevant decision is made by the dean of the faculty with the consent of the dean of the faculty (director of the institute), whose department provides teaching of this discipline. In this case, the graduate student who has chosen such a discipline must agree in writing with possible minor changes in the scope of the discipline, the form and scope of training, the form of semester control.

6. A graduate student may not choose the same subject twice.

7. If a graduate student for a good reason could not choose the discipline in time, or found an error in his expression of will, he applies to the dean's office with an application for enrollment in the study of his chosen disciplines, providing the relevant documents. A graduate student who has neglected his right to choose will be enrolled to study those disciplines that the head of the graduating department will consider necessary to optimize study groups and flows.

8. The disciplines chosen by the graduate student are indicated in his individual curriculum.

9. More information on the procedure for the implementation by graduate students of the right to free choice of academic disciplines can be found in the Regulations on the exercise of the right to free choice of academic disciplines by applicants for higher education KPI. Igor Sikorsky (https://kpi.ua/free-choice-of-academic-disciplines-right).

Discipline 1 for study in the second year

Discipline	Analysis and synthesis of DC energy transmission systems
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Electrical networks and systems
Requirements for the	The study of the discipline is based on knowledge of the following disciplines:
beginning of the study	"Methods of research, formation and management of intelligent energy systems
	and complexes", "Fundamentals of the theory of electromagnetic fields and
	processes", "Unconventional and renewable energy sources in power systems
	and electrical complexes", "Monitoring, control and protection of electric power
	systems and electrotechnical complexes "," Foreign language for scientific
	activity "
What will be studied	General characteristics of high-voltage HVDC networks. Integration of DC
	systems into power systems. Mathematical models of HVDC. Protection of direct
M/hit is interesting /	Current networks.
why it is interesting /	the mode parameters of AC systems with lines and inserts of DC to grapte
necessary to study	the mode parameters of AC systems with mes and inserts of DC, to create
	tools for research of DC lines and methods of analysis of hybrid networks
Why you can learn	Perform analysis of operating modes of AC networks with inserts and DC lines:
(learning outcomes)	synthesis of calculation schemes for the study of DC transmission systems:
(icaning outcomes)	develop simulation mathematical models in Matlab and Power Factory software
	environments
How to use the	Plan and perform simulation studies of AC systems with lines and inserts of DC
acquired knowledge	and tangential interdisciplinary areas using modern tools, understand the
and skills	general principles and methods of technical sciences, as well as the methodology
(competencies)	of experimental research, apply them in their own research in electrical
	engineering and teaching practice.
Information support	Discipline syllabus,
	https://classroom.google.com/c/MTUxNDQ0MzY5MTg5?cjc=m2shqxv
Type of classes	Lectures
Type of semester	Test
control	

Discipline	Methods of structural and parametric synthesis of regulators for systems with
	transport delay
Higher education degree	Third (educational and scientific)
Year	2nd year
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Power system automation
Requirements for the	The course is based on the knowledge gained by students in the study of the
beginning of the study	courses "Theory of automatic control", "Fundamentals and means of
	information transmission in electricity" and "Automatic and automated control
	in power systems".
What will be studied	Scientific principles on methods, organizational and technological measures of
	scientific research in the field of synthesis of regulators for systems with
	transport delay
Why it is interesting /	Formation of a system of abilities to set and solve complex scientific problems
necessary to study	during research and innovation activities in the field of automation of electric
Why you can learn	A characteristic feature of which like most technological objects is the presence
(learning outcomes)	of significant delays in the control and measurement channels, due to the final
(icaning outcomes)	speed of propagation of information signals in objects (transport delay).
	deepening knowledge of automatic control theory to solve problems of
	regulators systems with transport delay.
How to use the	Effectively apply methods of synthesis of speed-optimal regulators for objects
acquired knowledge	with delay; determine the classification of objects with a delay and their dynamic
and skills	characteristics; Apply the acquired knowledge of research methods in the
(competencies)	development of scientific papers; use special methods when performing
	research; organize and conduct research in the process of preparing a
	dissertation; to carry out approbation and implementation of research results in
	practice; have the skills to find independent solutions to scientific problems;
Information current	1 Sullabus
mormation support	1. Sylidbus. 2. Louis C. Westphal, Handbook of Control Systems Engineering - 2nd
	edition: The Springer International Series in Engineering and Computer
	Science Springer. 2001 T. 635 1063 s.
	3. Automatic control systems / Farid Golnaraghi, Bendjamin C. Kuo John
	Wiley & Sons, inc 2009 786 p.
	4. Introduction to digital control systems theory / A. Kulik, I. Dybska The
	textbook Kharkiv: National Aerospace University "Kharkov Aviation
	Institute", 2007 165 p
	5. Classical methods of automatic control. / Ed. A.A. Lanne СПб: БХВ -
	Петербург, 2004 640 с.
	6. Popovich MI, Kovalchuk OV Theory of automatic control: Textbook K .:
	Lydia, 1997544p.
	7. Automatic control systems with delay, textbook, anowance / ru.ru.
	Tamboy: Tamb Publishing House state tech University 2007 - 76 n
	8. Dralyuk BN, Sinaisky GV Systems of automatic regulation of objects with
	transport delay: Library on automation, issue 341 M .: "Energy", 1969.
	- 72 p.
	9. AM Lityuga. Theoretical bases of construction of effective automatic

	control systems of TP / AM Lityuga, NV Klinachev, VM Mazurov 2002 216p
Type of classes	Classes are held in the form of lectures using demonstration material. Lectures are informative and problematic.
Type of semester control	Test

Discipline	Current trends in the integration of renewable energy sources
	into the power grid
Higher education degree	Third (educational and scientific)
Year	2nd year
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Renewable energy sources
Requirements for the	The course is based on the knowledge gained by students in the study of
beginning of the study	electrical networks and systems, photovoltaics, mathematical problems in
	renewable energy.
What will be studied	Scientific principles on methods, information and monitoring technologies used
	in RES power grids. These issues in this course are considered comprehensively,
	taking into account modern requirements for knowledge of technical,
	technological and economic aspects of renewable energy.
Why it is interesting /	Formation of abilities to set and solve complex scientific problems during
necessary to study	research and innovation activities in the field of renewable energy.
Why you can learn	Apply the necessary methods when performing research; find, process and store
(learning outcomes)	information in the study of scientific literature; to carry out approbation and
	implementation of research results in practice; have the skills to independently
	solve scientific problems, design research, preparation and defense of scientific
	work.
How to use the	Ability to set and solve research problems in the field of joint work of renewable
acquired knowledge	and traditional energy sources; ability to present and discuss the results of
and skills	scientific research orally and in writing; ability to solve scientific problems
(competencies)	heatevoltaic, wind power and hybrid systems: ability to adhere to research
	ethics as well as rules of academic integrity.
Information support	1.Svlabus.
	2. Kothari D. P., Nagrath I. J. Modern Power System Analysis / New Delhi: Tata
	McGraw-Hill, 2003 694 p.
	3. Padiyar K. R. FACTS controllers in power transmission and distribution / New
	Delhi: New Age International (P) Ltd., Publishers, 2007 532 p.
	4. B.S. Stogniy, OV Кириленко, A.B. Prakhovnik, SP Denisyuk. Evolution of
	intelligent electrical networks and their prospects in Ukraine // Technical
	Electrodynamics, 2012, №5, p. 52 - 67.
	5. Prospects for the use of synchronized vector measurements //
	sinbronizirovannyb-vektornyb-izmerenii/
	6 M A Mohamed A M Eltamaly Modeling and Simulation of Smart Grid
	Integrated with Hybrid Renewable Energy Systems / Springer, 2018, - 75 p
	7.QC. Zhong and T. Hornik, Control of Power Inverters in Renewable Energy and
	Smart Grid Integration. Wiley-IEEE Press, 2013 438 p.
	8.F. HM Rafi, MJ Hossain, J. Lu, Hierarchical controls selection based on PV
	penetrations for voltage rise mitigation in a LV distribution network //
	International Journal of Electrical Power and Energy Systems 2016 19 pp.,
	Https://doi.org /10.1016/j.ijepes.2016.02.013
	9.M. Hojabri et al. A Comprehensive Survey on Phasor Measurement Unit
	Applications in Distribution Systems // November 2019Energies, 2019 12 (23),
	DOI: 10.3390 / en12234552
	10.G. B. Giannakis, V. Kekatos, N. Gatsis, S. Kim, H. Zhu and B. F. Wollenberg.

	Monitoring and Optimization for Power Grids: A Signal Processing Perspective // IEEE Signal Processing Magazine, vol. 30, no. 5, pp. 107-128, Sept. 2013, DOI: 10.1109 / MSP.2013.2245726. 11.S. Santoso, M.F. McGranaghan, R.C. Dugan, H.W. Beaty. Electrical Power Systems Quality, Third Edition // McGraw-Hill Education, 2012 522 p. Additional: 12. DSTU IEC 61000-4-30: 2010 (EN 61000-4-30: 2009) Electromagnetic compatibility (EMC). Part 4-30. Test and measurement methods. Measurement of electricity quality indicators. 13. E. Hossain et al. Analysis and Mitigation of Power Quality Issues in Distributed Generation Systems Using Custom Power Devices // IEEE Access,
	2018 DOI: 10.1109 / ACCESS.2018.2814981 14. J. Zhao et al., "Power System Dynamic State Estimation: Motivations, Definitions, Methodologies, and Future Work," in IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3188-3198, July 2019, DOI: 10.1109 / TPWRS 2019 2894769
	 15. A. Sundararayan, T. Khan, A. Moghadasi, A.I. Sarwat. A Survey on Synchrophasor Data Quality and Cybersecurity Challenges, and Evaluation of their Interdependencies // J. Mod. Power Syst. Clean Energy, 2018 DOI 10.1007 / s40565. 16. NKREKP. Resolution 13, 12, 2019 No.2802. On amendments to the resolution of
	the National Commission for Regulation of Economic Competition of April 26, 2019 №641.
Type of classes	Classes are held in the form of lectures using demonstration material. Lectures are informative and problematic.
Type of semester control	Test

Discipline	Operating modes of wind power plants in power systems
Higher education	Third (educational and scientific)
degree	
Year	2nd year
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Renewable energy sources
Requirements for the	The course is based on the knowledge gained by students in the study of wind
beginning of the study	energy.
What will be studied	Scientific principles on methods, organizational and technological measures of
	scientific research in the field of wind energy
Why it is interesting /	Formation of a system of abilities to set and solve complex scientific problems
necessary to study	during research and innovation activities in the field of wind energy.
Why you can learn	Apply the necessary methods of scientific research in the development of
(learning outcomes)	scientific papers; use special methods when performing research; organize and
	conduct research in the process of preparing a dissertation; to carry out
	approbation and implementation of research results in practice; have the skills
	to find independent solutions to scientific problems; choose topics for scientific
	work.
How to use the	Ability to perform original research, to achieve scientific results that create new
acquired knowledge	knowledge in the field of wind energy; ability to present and discuss orally and in
and skills	writing the results of scientific research in Ukrainian and English; ability to solve
(competencies)	scientific problems of increasing the reliability and efficiency of wind power
	to identify set and solve research tasks in the field of wind energy evaluate and
	ansure the quality of research: ability to adhere to the ethics of research, as well
	as the rules of academic integrity in research and scientific and nedagogical
	activities.
Information support	1.Sylabus.
	2. DSTU 3896: 2007 Wind power plants and wind power stations. Terms and
	definitions. –K .: Derzhspozhyvchstandart Ukrainy, 200824p.
	3. Шефтер Я.И. Use of wind energyМ .: Energoatomizdat, 1983200p.
	4. Sazonov VA, Belopolsky VA, Smirnov SB Some questions of design and
	extreme modes of operation of wind turbines with a horizontal axis of rotation:
	TextbookSevastopol: SNIAEiP, 2004208p.
	5.Fateev EM Wind turbines and wind turbines. –M .: Gosizdat s.h. lit., 1957
	538C.
	6. KITVISOV VS, Oleyilikov Alvi, fakovlev Al mexilauslible energy. Book 1, 2. Winu generators - Kharkov: Nat. Aerospace University "KHAI". Sevastopol: North
	National Technical University 2003 -400n
	7. Wind energy, p / r D, de Renzo .– M .: Energoatomizdat, 1982.– 272p.
	8. Kashafutdinov ST. Lushin VN Atlas of aerodynamic Wing profiles Novosibirsk
	:, 1994 76p.
	9. Andrianov VN, Bystritsky DN, Vashkevich KP, Sectorov VR Wind power
	stations ML .: Gosenergoizdat, 1960. –320p.
	10.Вітроенергетика [Electronic resource]: навч. way. for students. specialty 141
	"Electric power, electrical engineering, electromechanics" / Golovko VM; KPI
	them. Igor Sikorsky Electronic text data (1 file: 5.5 MB) Kyiv: KPI named after
	Igor Sikorsky, 2019 88 p.
	Additional:

	 1.DSTU 2275-93 Energy saving. Unconventional and renewable energy sources. Terms and definitions. –К .: State Standard of Ukraine, 199452p. 2.Sveshnikov AA Applied methods of the theory of random functions. –М .: Nauka, 1968464p. 3.Sigorsky VP Mathematical apparatus of an engineer. –К .: Technique., 1976 768p. 4. Dubrov AM, Mkhitaryan BC, Troshin LI Multidimensional statistical methods: Textbook - М : ФИНАНСЫ И СТАТИСТИКА. 2000. — 352c
Type of classes	Classes are held in the form of lectures using demonstration material. Lectures are informative and problematic.
Type of semester control	Test

Discipline	Modern methods of synthesis, analysis and research of dynamic systems
Higher education	Third (educational - scientific)
degree	
Year	2nd year, autumn semester
Number of credits	90 hours / 3 ECTS credits
Language	Ukrainian
Department	Electromechanics
Requirements for the	Availability of knowledge acquired by a PhD student while studying at the first
beginning of the study	(bachelor's) and second (master's) levels of higher education. In particular, the
	availability of knowledge gained during the study of disciplines "Mathematical
	modeling of electromechanical energy converters", "Technical electrodynamics".
	To successfully master the discipline, the student must have a "Foreign language
	for scientific activities", as much of the information is presented in the scientific
	literature in English.
What will be studied	Modern methods of mathematical analysis (modeling) of dynamic (non-
	stationary) modes of operation of electromechanical energy converters (EMPE)
	and methods of synthesis of their parameters based on reliable simulation
	results.
Why it is interesting /	The study of the methodology of analysis of dynamical systems has universal
necessary to study	scientific and practical significance, as the learning outcomes can be used in the
	analysis of a wide range of physical processes occurring not only in
	electromechanical energy converters, but also in technical facilities
Why you can learn	After graduation, the PhD student acquires knowledge of modern techniques,
(learning outcomes)	algorithms and software for reliable mathematical modeling of dynamic modes
	of electromechanical energy converters and methods of directed synthesis of
	parameters of energy-efficient electromechanical complexes based on them.
How to use the	The knowledge acquired during the study of the discipline can be purposefully
acquired knowledge	used in the development of new and improvement of existing electromechanical
and skills	energy converters for a wide range of functional purposes. Acquired
(competencies)	competencies allow to perform mathematical analysis and synthesis of the fatest
	systems based on them, taking into account the neguliarities of their operation
	in both constant and poplinear dynamic modes of operation
Information support	Distance course in the Moodle system: https://do.ino.knj.ua/login/index.nhn
Type of classes	Day
Type of semester	Offset / MCR / RGR
control	

Discipline	Methods of rapid prototype testing of asynchronous electric drives
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Automation of electromechanical systems and electric drive
Requirements for the	To successfully master the discipline, the student must have a "Foreign language
beginning of the study	for research", as much of the literature on the discipline is written in English, as
	well as the discipline "Advanced technologies in electric drive and
	electromechanical systems -2".
What will be studied	Principles of construction of experimental installations on the basis of the
	concept of fast prototype testing for research of electromechanical systems with
	alternating current motors. Peculiarities of hardware and software of fast
	counter-testing stations are studied, their use allows to carry out practical
	realization of new algorithms of control of engines for time which is proportional
	to the time spent on mathematical modeling.
Why it is interesting /	The concept of rapid prototype testing is used in all leading research centers and
necessary to study	universities in the study of electromechanical systems and power electronics.
	Experimental research is a mandatory final stage of research and allows to test in
	practice the operation of control systems taking into account the effects of
	unmodulated dynamics, such as measurement noise, discrete information
	representation in digital implementation, imperfections of power
	semiconductors, etc. The use of the concept of rapid prototype testing allows to
	ensure the high quality of experimental research and to prepare theoretical
	results for serial implementation.
Why you can learn	Principles and circuit solutions in terms of hardware of prototype testing
(learning outcomes)	stations, structures on which the software is built, practical skills of
	Implementation of control algorithms on digital signal processors, methods of
	experimental research of control algorithms for AC motors.
How to use the	- to create experimental installations for research of control algorithms in
acquired knowledge	world experience:
(competencies)	develop software for digital signal processors:
(competencies)	- perform practical implementation of control algorithms for AC motors on
	digital signal processors:
	- to carry out experimental testing according to generally accepted methods
	which simplifies their coverage in the scientific literature
Information support	Syllabus, lecture notes.
Turne of classes	
i ype of classes	
Type of semester	Test
control	

Higher education degreeThird (educational and scientific)Year2nd year (3)Number of credits3 ECTS creditsLanguageUkrainianDepartmentAutomation of control of electrotechnical complexes, IEERequirements for the beginning of the studyKnowledge of the theory of automatic control, methods of synthesis and analysis of SACWhat will be studiedWithin the discipline the basic concepts of system analysis, methods of classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear systems and also methods of estimation of accuracy of the received models are
degreeYear2nd year (3)Number of credits3 ECTS creditsLanguageUkrainianDepartmentAutomation of control of electrotechnical complexes, IEERequirements for the beginning of the studyKnowledge of the theory of automatic control, methods of synthesis and analysis of SACWhat will be studiedWithin the discipline the basic concepts of system analysis, methods of classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear systems, and also methods of accuracy of the received models are
Year2nd year (3)Number of credits3 ECTS creditsLanguageUkrainianDepartmentAutomation of control of electrotechnical complexes, IEERequirements for the beginning of the studyKnowledge of the theory of automatic control, methods of synthesis and analysis of SACWhat will be studiedWithin the discipline the basic concepts of system analysis, methods of classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear systems, and also methods of accuracy of the received models are
Number of credits3 ECTS creditsLanguageUkrainianDepartmentAutomation of control of electrotechnical complexes, IEERequirements for the beginning of the studyKnowledge of the theory of automatic control, methods of synthesis and analysis of SACWhat will be studiedWithin the discipline the basic concepts of system analysis, methods of classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear systems, and also methods of estimation of accuracy of the received models are
LanguageUkrainianDepartmentAutomation of control of electrotechnical complexes, IEERequirements for the beginning of the studyKnowledge of the theory of automatic control, methods of synthesis and analysis of SACWhat will be studiedWithin the discipline the basic concepts of system analysis, methods of classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear systems, and also methods of estimation of accuracy of the received models are
DepartmentAutomation of control of electrotechnical complexes, IEERequirements for the beginning of the studyKnowledge of the theory of automatic control, methods of synthesis and analysis of SACWhat will be studiedWithin the discipline the basic concepts of system analysis, methods of classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear systems, and also methods of estimation of accuracy of the received models are
Requirements for the beginning of the studyKnowledge of the theory of automatic control, methods of synthesis and analysis of SACWhat will be studiedWithin the discipline the basic concepts of system analysis, methods of classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear systems, and also methods of estimation of accuracy of the received models are
beginning of the studyof SACWhat will be studiedWithin the discipline the basic concepts of system analysis, methods of classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear systems, and also methods of estimation of accuracy of the received models are
What will be studied Within the discipline the basic concepts of system analysis, methods of classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear systems, and also methods of estimation of accuracy of the received models are
classification of systems, models of systems used in identification problems, parametric and nonparametric methods of identification of linear and nonlinear
parametric and nonparametric methods of identification of linear and nonlinear systems, and also methods of estimation of accuracy of the received models are
systems, and also methods of estimation of accuracy of the received models are
considered
Why it is interesting / To form a deepening of knowledge in the theory of automatic control and higher
necessary to study mathematics to solve problems of structural and parametric identification of
systems, building control systems with dynamic objects, gaining skills in
application of identification methods and application software to identify
electrical systems and their elements.
Why you can learn After studying the course, students are able to effectively apply methods of
(learning outcomes) analysis, mathematical modeling, perform physical and mathematical
experiments in research, integrate knowledge from other disciplines, apply a
systematic approach and take into account non-technical aspects in solving
engineering problems and research, justify the choice of development methods.
solving a specialized task, critically evaluate the results obtained and defend the
decisions made
How to use the Search, analyze and critically evaluate information from various sources,
acquired knowledge research and model phenomena and processes in complex dynamic power,
and skills electrical and electromechanical systems, apply a systems approach, integrating
(competencies) knowledge from other disciplines and taking into account non-technical aspects,
in solving theoretical and applied problems selected field of research.
Information support 1. MIT OpenCourseWare. System Identification Access mode
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
435-system-identificationspring-2005/index.htm
System Identification Toolbox of MATLAB package - Access mode:
www.mathworks.com/products/sysid/
Type of classes Lectures
Type of semester Test
control

Discipline	Monitoring of technical risks
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Electromechanical equipment of energy-intensive industries, IEE
Requirements for the	Knowledge of higher mathematics, general physics, theoretical foundations of
beginning of the study	electrical engineering, theoretical mechanics, hydraulics and automation
What will be studied	physical foundations, theories and principles of operation of
	electromechanical equipment;
	features of constructive arrangement of installations and machines;
	 - features and order of operation of mechatronic systems;
	 - basics of designing mechatronic systems;
	scientific and technical directions of reducing part of manual labor,
	environmental protection and labor protection.
Why it is interesting /	In order to:
necessary to study	- technically correct and economically justified to choose installations and
	measure their main operating parameters;
	- perform calculations to determine the optimal parameters of the installation;
	- perform measurements and analysis of operating modes of machines using a
	computer.
Why you can learn	Knowledge and skills acquired in the process of studying the credit module
(learning outcomes)	"Technical Risk Monitoring" are necessary for each specialist in this specialty
	who solve engineering problems in the field of electromechanics and in the study
	of the following disciplines: "Automated electric drive", "Modeling",
	"Fundamentals of electromechanics" »Etc.
How to use the	- ability to use methods of analysis in engineering calculations;
acquired knowledge	- calculate the basic parameters of electromechanical systems;
and skills	- making engineering decisions on a set of issues of functioning, research of basic
(competencies)	parameters;
	- computer modeling, design and operation of electromechanical equipment
	used in industry, transport and construction
Information support	Syllabus,
	https://classroom.google.com/c/MjIwMjUxOTI4MzE3?cjc=a534jai
	Access code: a534jai
	https://classroom.google.com/c/
Type of classes	lectures
Type of semester	test
control	
1	

Discipline	Special issues of protection against electromagnetic effect of lightning
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian, English
Department	Theoretical electrical engineering
Requirements for the	Basic knowledge of general physics, theoretical foundations of electrical
beginning of the study	engineering, industrial electronics, electromagnetic compatibility of technical
	means. Initial ideas about the main types and characteristics of electrical
	equipment in electrical and other systems and installations for which the
	electromagnetic effects of lightning discharges can be critical.
What will be studied	Basics of protection against electromagnetic effects of lightning. Varieties and
	characteristics of screens. Multilayer screens. Shielding of electromagnetic fields
	of lightning. Induction of voltages and currents in overhead lines and cables.
	Shielding of the magnetic field in buildings. Separate distances and isolated
	lightning protection systems. Examples of protection of facilities in various
	industries (power plants and substations, wind power plants, photovoltaic
	plants, transport, oil and gas complexes, renewable energy facilities, industrial
	and agricultural enterprises). Active and other alternative lightning rods.
	Regulations.
Why it is interesting /	Important objects in various industries are exposed to serious dangers
necessary to study	associated with electromagnetic influences during lightning discharges, direct
	and near. Therefore, it is important to be able to analyze such possible effects
	and choose adequate means of protection against them.
Why you can learn	Navigate in dangerous situations related to the electromagnetic effects of
(learning outcomes)	lightning discharges on various important objects. Understand the principles of
	protection against them, perform calculations of induced voltages and currents,
	choose means of protection. Get acquainted with the relevant regulations.
How to use the	Calculate the characteristics of electromagnetic and other effects of lightning on
acquired knowledge	various objects. Develop and select appropriate remedies. Apply current
and skills	regulations to develop protection.
(competencies)	
Information support	Syllabus, teaching materials (manuals, presentations for lectures, etc.),
	standards.
Type of classes	Lectures, practical classes.
Type of semester	Test
control	

Discipline	General principles of construction and management of active power distribution
	systems
Higher education	Third (educational and scientific)
degree	
Year	2
Number of	3 ECTS credits
credits	
Language	Ukrainian, English
Department	Power supply
Requirements for	The course is based on the knowledge gained in the study of such disciplines as:
the beginning of	"Electrical networks and systems", "Mathematical modulation and decision making in
the study	power supply systems", "Power distribution systems and control", "Intelligent
	technologies in power supply systems".
What will be	Problems of construction and functioning of modern and perspective systems of
studied	distribution of electric energy in the conditions of wide use of the dispersed sources of
	antimization of distribution notwork modes equipped with modern switching devices
	microprocessor protection and automation at different levels of information support
-	
Why it is	The study of the discipline will allow to master the knowledge of building
interesting /	mathematical models of distribution networks, algorithms of linear and power grid
necessary to	equipment, the use of intelligent optimization methods and decision making in the
study	construction and management of power distribution and consumption systems.
Why you can	Perform simulation modeling of distribution networks with integrated in them various
learn (learning	dispersed means of energy generation and storage, use modern methods of
outcomes)	optimization and decision making, get acquainted with intelligent control technologies
	for active power distribution systems, gain knowledge about the use of modern
-	information control systems in electricity.
How to use the	The acquired knowledge will allow to perform complex research related to the optimal
acquired	use of renewable energy sources, their integration into distribution networks, to
knowledge and	manage the modes of electricity distribution systems taking into account the
Skills	requirements of the energy market; to use the gained experience for professional
(competencies)	activity in the field of increase of efficiency and quality of power supply at designing,
	reconstruction, development of systems of distribution of electric energy, set and
	of academic integrity in the implementation of research and implementation of
	scientific and nedagogical activities
Information	Syllabus, teaching materials (manuals, presentations for lectures, etc.), standards
support	
Type of classes	Lectures, practical classes.
Type of semester	Test
control	

Discipline 2 for study in the second year

Discipline	Mathematical modeling of Smart-systems of alternating current
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Electrical networks and systems
Requirements for the	The study of the discipline is based on knowledge of the following disciplines:
beginning of the study	"Methods of research, formation and management of intelligent energy systems
	and complexes", "Fundamentals of the theory of electromagnetic field and
	processes", "Unconventional and renewable energy sources in power systems
	and electrical complexes", "Monitoring, control and protection of electric power
	systems and electrotechnical complexes "," Foreign language for scientific
14/hot will be studied	activity .
what will be studied	Froblems of alternating current electricity transmission and their solution.
	and communication models of intelligent power systems. Power and information
Why it is interesting /	The study of the discipline will allow to master the knowledge of mathematical
necessary to study	models of construction types and algorithms of operation of linear and power
necessary to study	network equipment of electrical networks of alternating current: laws of
	intellectual management of technological processes of generation, transmission.
	distribution and consumption of electric energy in power systems; methods of
	modeling Smart-systems.
Why you can learn	Perform simulation modeling of power systems, which are presented in the form
(learning outcomes)	of complex AC electrical networks, including those containing intelligent
	connections using the most effective methods of modeling Smart-systems,
	calculations of operating modes of technological equipment of electrical
	networks, stations and substations with constituent information and
	communication elements.
How to use the	Develop simulation models of electrical networks with elements of artificial
acquired knowledge	intelligence, use of software environments MatLab and Power Factory, analysis
and skills	of mode parameters of Smart-systems.
(competencies)	
Information support	Perform simulation studies of Smart-systems of alternating current; optimally
	choose and apply in practice various mathematical models of elements and
	methods of calculation of smart grids; determine the calculated parameters of
	mathematical models and effectively use them in assessing the steady and post-
	emergency modes of operation of power systems; to determine the design
	parameters and optimal mode characteristics of the regulating, compensating
	and adjusting equipment, as well as the methodology of scientific research, to
	apply them in their own research in the field of electrical engineering and in
Type of classes	Learning practice.
i ype of classes	
Type of semester	https://classroom.google.com/c/MTUxNDQ2MDY0NDA5?cjc=tlir677
control	

Discipline	Methods for optimizing the study of the stability of adaptive systems
Higher education	Third (educational and scientific)
degree	
Year	2nd year
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Power system automation
Requirements for the	The course is based on the knowledge gained by students in the study of the
beginning of the study	courses "Theory of automatic control", "Transients in power", "Automatic and
	automated control in power systems".
What will be studied	Scientific bases on methods of optimization of research of stability of adaptive
	systems, bases of the theory of optimum and adaptive systems of management
	and data processing, the analysis of principles of construction of adaptive
	systems, principles of optimum estimation of parameters on discrete
	measurements and effective algorithms of search of estimations.
Why it is interesting /	A characteristic feature of adaptive systems is the lack of complete a priori
necessary to study	information about the object of control, external perturbations and boundary
	conditions, le the adaptive system is characterized by uncertainty. The
	in which a cortain criterion is met. Formation of a system of abilities to set and
	solve complex scientific problems during research and ippovation activities in the
	field of automation of electric nower systems, deepening knowledge of the
	theory of automatic control to solve problems of studying the stability of
	adaptive systems.
Why you can learn	Apply the necessary methods of scientific research in the development of
(learning outcomes)	scientific papers; use special methods when performing research; organize and
	conduct research in the process of preparing a dissertation; to carry out
	approbation and implementation of research results in practice; have the skills
	to find independent solutions to scientific problems; choose topics for scientific
	work.
How to use the	Ability to perform original research, to achieve scientific results that create new
acquired knowledge	knowledge in the field of management of production and distribution of
and skills	electricity; ability to present and discuss orally and in writing the results of
(competencies)	scientific research in Ukrainian and English; ability to solve scientific problems of
	increasing the reliability and efficiency of management, protection and
	automation of power systems, due to the need to ensure sustainable
	development of the state; ability to identify, set and solve research tasks in the
	the quality of research, ability to adhere to the othics of research, as well as the
	rules of academic integrity in research and scientific and nedagogical activities
Information support	1. 1. Svilabus
	2. 2. Fradkov AL Adaptive control in complex systems: search methods M
	.: Nauka, 1990 286p.
	3. 3. Pavlov BV, Soloviev IG Direct adaptive control systems M .: Nauka,
	1989136p.
	4. 4. Churakov EP Optimal and adaptive systems М.: Высш. school, 1987.
	- 256 p.
	5. 5. Stability of adaptive systems. Per. with English / Anderson B., Bitmid
	R., Johnson K. and others - M .: Mir, 1989-263p.
	6. 6. Dr. Kyriakos G. Vamvoudakis; Jagannathan Sarangapani - Control of
	Complex Systems: Theory and Applications / Springer International

	Publishing, 2017
	7. 7. Christoph M. Hackl - Nin-Indetifer Based Adaptive Control in
	Mechatronics: Theory an Application / Springer International Publishing
Type of classes	Classes are held in the form of lectures using demonstration material. Lectures
	are informative and problematic.
Type of semester	Test
control	

Discipline	Advanced technologies in renewable energy
Higher education	Third (educational and scientific)
degree	
Year	2nd year
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Renewable energy sources
Requirements for the	The course is based on the knowledge gained by students in the study of wind
beginning of the study	energy, bioenergy, photovoltaics, solar thermal energy, geothermal energy and
	integrated use of renewable energy sources.
What will be studied	Scientific principles on advanced methods, organizational and technological
	measures of scientific research in the field of renewable energy
Why it is interesting /	Formation of a system of abilities to set and solve complex scientific problems
necessary to study	during research and innovation activities in the field of renewable energy.
Why you can learn	Apply the necessary methods of scientific research in the development of
(learning outcomes)	scientific papers; use special methods when performing research; organize and
	conduct research in the process of preparing a dissertation; to carry out
	approbation and implementation of research results in practice; have the skills
	to find independent solutions to scientific problems; choose topics for scientific
	work.
How to use the	Ability to perform original research, to achieve scientific results that create new
acquired knowledge	knowledge in the field of renewable energy; ability to present and discuss orally
and skills	and in writing the results of scientific research in Ukrainian and English; ability to
(competencies)	solve scientific problems of increasing the reliability and efficiency of renewable
	energy systems, due to the need to ensure sustainable development of the
	state; ability to identify, set and solve research tasks in the field of renewable
	energy, evaluate and ensure the quality of research; ability to adhere to the
	ethics of research, as well as the rules of academic integrity in research and
Information support	1 Sylabus
mormation support	1. Syldbus.
	Energy of NASU 2020 - 392 n
	2. Unconventional and renewable energy sources / Kudrya SO - Textbook Kviv:
	National Technical University of Ukraine (KPI), 2012. – 495p.
	3. Atlas of energy potential of renewable energy sources in Ukraine / ed. S.O.
	Curls Kyiv: Institute of Renewable Energy of the National Academy of Sciences
	of Ukraine, 2020 82 p.
	4. Karmazin OO Balance reliability of electric power systems in the conditions of
	growth of a share of renewable power: dis. for science. degree of Cand. tech.
	Sciences: 14.08.2019 / Karmazin Alexey Alexandrovich - K., 2019 143 p.
	5. Budko VI The use of solar radiation and wind energy for charging electric
	vehicles: dis. for science. degree of Dr. tech. Sciences: 14.08.2019 / Budko Vasily
	Ivanovich - K., 2019 302 p.
	6. Вітроенергетика [Electronic resource]: навч. way. for students. specialty 141
	them Jaco Sikersky Electronic text data (1 file: E E MP) Kyiy: KDI named after
	laor Sikorsky 2019 - 88 n
	Additional:
	1. DSTU 2275-93 Energy saving. Unconventional and renewable energy sources
	Terms and definitions. –K .: State Standard of Ukraine. 199452p.
	2. Requirements for wind and solar power plants during their operation in

	parallel with the unified energy system of Ukraine: SOU NEK 341.001: 2019. NEK Ukrenergo, 2019.
Type of classes	Classes are held in the form of lectures using demonstration material and practical classes. Lectures are informative and problematic.
Type of semester control	Test

Discipline	Modern methods and models of analysis of regime reliability of electric power
	systems
Higher education	Third (Doctor of Philosophy)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Renewable energy sources
Requirements for the	theory of electromagnetic transients and electromechanical processes in the
beginning of the study	power system, calculation of steady-state modes, basics of operation and modes
	of operation of the electrical part of stations and substations, control of power
	plants and systems, theory of electric machines, reliability of power systems,
	basics of relay protection and automation of power systems. Intelligent methods
	for assessing the technical condition of electrical equipment.
What will be studied	Basic provisions and formulation of reliability indicators in the power industry.
	Factors reducing the reliability of modern power systems. The impact of
	liberalization in the power industry on the reliability of power systems. Technical
	condition and operating conditions of modern electrical equipment with power
	plants of different types. Features of operation and tasks of ensuring the
	reliability and safety of NPPs in case of equipment failures Cascade development
	of emergency processes in the NPP. Characteristics of cascade accident scenarios
	in the world power industry. Economic mechanisms to ensure the reliability and
	survivability of the power system. Characteristics of the problem of ensuring the
	balance reliability of the power system. Indicators of balance reliability of EES
	Tasks of ensuring regime reliability of EES. Static mode reliability taking into
	account the development of failures. Estimation and management of static
	mode reliability. Dynamic mode reliability taking into account the development
	of accidents. Operating modes of EES in case of electrical equipment failures.
	Analysis of regime reliability of UES by methods of risk theory Methods and
	models of operational risk assessment of electric power facilities. Determining
	the priority of decommissioning of electrical equipment. Decision making in
	conditions of risk. Probabilistic and statistical methods for assessing the regime
	reliability of the power system. Quantitative indicators of the risk of violation of
	the normal regime in the event of electrical equipment failures Assessment of
	the risk of electrical equipment failure in the event of disturbances in the
	external electrical network. Modeling and risk assessment of NPP power supply
	system failure from external energy sources.
Why it is interesting /	Liberalization of the power industry, and the increase in the world in recent
necessary to study	decades of major systemic accidents exacerbates the problem of ensuring the
	reliability of power systems with power plants of various types; this requires
	students to master the principles and methods of building models of electrical
	equipment failures, the methodology of simulation research of regime reliability,
	analysis and risk management in the EEC, methods of preventive decisions to
	reduce operational risks in the EEC.
wny you can learn	select and develop new models for determining the probability of failure of
(learning outcomes)	electrical equipment using modern II-technologies, investigate emergency
	modes and quantify the risk of normal failure in case of failure and
	minimize the risk of operation of electrical equipment, develop preventive measures to
	ninimize the risk of operation of electrical equipment and complex power
How to use the	plants.
	the student will be able to:
acquirea knowledge	- apply the basic provisions of systems theory for the analysis of processes in

and skills (competencies)	 the power system with power plants of different types; use modern information technologies to develop models for assessing the risk of failure of electricity facilities; apply the principles and methods of simulation for the study of emergency modes of power systems in case of failure of electrical equipment; perform calculations and analysis of electromechanical transients in the UES with the NPP; assess the risk of failure of the NPP power supply system. assess the regime reliability of EES subsystems on the basis of probabilistic and statistical determination of emergency risk indicators; make optimal decisions to minimize the risk of accidents in the subsystems of the UES based on a risk-oriented approach.
Information support	Training and working programs of the discipline, RSO, teaching materials (lecture notes, computer workshops), guidelines for computational and graphic work, computer workshops
Type of classes	computer workshops, modular control work, calculation and graphic work
Type of semester control	Offset.

Discipline	Fundamentals of system electromechanics
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Electromechanics
Requirements for the	Prerequisites for studying the discipline are the results of studying and mastering
beginning of the study	previous disciplines: "Modeling of electromechanical systems", "Fundamentals
	of the theory of structures of electromechanical systems", "Fundamentals of
	innovative synthesis of electromechanical systems", "Fundamentals of research".
What will be studied	System-forming principles that determine the structural organization and
	coevolution of electromechanical energy converters with the possibility of their
	systematization and scientific prediction.
Why it is interesting /	The development of science and the creation of competitive electromechanical
necessary to study	systems is impossible without knowledge of fundamental principles and the use
	of systems approaches in the organization of scientific research. The amount of
	professional knowledge outlined only by the classical disciplines of one technical
	specialty or specialization is no longer sufficient for the formation of a modern
	scientific worldview of the applicant and conducting research at the
	interdisciplinary level in reality.
Why you can learn	The main learning outcomes are aimed at obtaining professional, systemic,
(learning outcomes)	innovative, prognostic, humanitarian, cognitive and interdisciplinary
	competencies of applicants.
How to use the	Applicants can effectively use the acquired knowledge and competencies in the
acquired knowledge	preparation of their dissertations, in the organization of basic and
and skills	interdisciplinary research, in the creation of complex electromechanical systems
(competencies)	with subsystems of other physical nature (mechanical, electronic, hydraulic,
	aerodynamic, biological, etc.).
Information support	Syllabus, lecture notes, description of the discipline, list of literature that are
	posted on information platforms:
	https://do.ipo.kpi.ua/course/view.php?ia=4149
Tuno of classes	Classroom / distance / mixed /loctures_practical_cominant)
Type of classes	Classroom / distance / mixed (lectures, practical, seminar).
Type of semester	Test.
control	
Type of classes Type of semester control	https://campus.kpi.ua/tutor/index.php?mode=mob&ir_own Classroom / distance / mixed (lectures, practical, seminar). Test.

Discipline	Identification of parameters in electromechanical systems
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Automation of electromechanical systems and electric drive FEA
Requirements for the	General knowledge of mathematics, theory of automatic control, English
beginning of the study	
What will be studied	The subject of the discipline "Identification of parameters in electromechanical
	systems" is the study of the theory of adaptive control, the application of its
	methods for the construction of modern adaptive electromechanical systems.
	The course includes the study of principles and algorithms for identifying the
	parameters of electromechanical systems for their automatic self-tuning,
	estimation of unmeasured coordinates with the help of adaptive observers and
	by direct adaptive control. Identification of electrical and mechanical parameters
	of electromechanical objects with fully and partially measured state vector.
Why it is interesting /	The study of this discipline is important for the construction of modern electric
necessary to study	drives and electromechanical systems, which, according to existing standards,
	must be equipped with adaptive control functions such as: identification of
	parameters for initial system initialization and subsequent self-tuning procedure.
	This knowledge is also needed for the development and research of new
	electromechanical systems.
Why you can learn	To develop and study electric drives of alternating current and
(learning outcomes)	electromechanical systems of wide technological purpose with properties of
	adaptation and robustness to parametric and coordinate perturbations.
How to use the	The acquired knowledge will help the future scientist to freely create modern
acquired knowledge	electromechanical automation systems for a wide range of technological
and skills	applications. To be the responsible executor on development of algorithms of
(competencies)	management of electric drives, electromechanical and electrotechnical systems.
	Perform research in the field of technology of modern control systems.
Information support	Curriculum and working programs of the discipline, RSO, English-language
	sources.
Type of classes	Lectures and practical classes.
Type of semester	Test
control	

Discipline	Mathematical modeling of power systems and electrical complexes
Higher education	Third (educational and scientific)
degree	
Year	2nd year (4)
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Automation of control of electrotechnical complexes, IEE
Requirements for the	Knowledge of the theory of automatic control of electrotechnical complexes,
beginning of the study	energy saving in electrotechnical systems, modeling of electrotechnical
	complexes
What will be studied	Mathematical modeling of energy modes of operation of electrical complexes -
	load unit, semiconductor converter, electromechanical converter, mechanical
	converter, executive body. Simulation and optimization mathematical models of
	electrical complexes. Implementation of energy efficient modes of operation of
	electrical systems.
Why it is interesting /	To form in young scientists the skills of independent design and research work,
necessary to study	which involves perfect mastery of the theory and technique of modeling of
	various complex electromechanical systems. The discipline focuses on the use of
14/1	modern application software in solving various scientific and technical problems.
(learning outcomes)	After studying the course, young scientists are able to produce new ideas
(learning outcomes)	(creativity); able to search, process and analyze information from various
	multicriteria antimization problems, to the implementation of energy efficient
	modes of operation of electrical complexes
How to use the	Formulation of verbal ontimization algorithms formalization of verbal
acquired knowledge	algorithms. Creation of simulation and mathematical models of ontimization of
and skills	control modes and selection of electrical equipment of electrical complexes.
(competencies)	Possession of methods for assessing the energy efficiency of the complex.
Information support	1. MIT OpenCourseWare. System Identification Access mode
	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
	2 System Identification Teelbox package MATLAR Access mode:
	2. System identification robusts / package MATLAD Access mode.
Type of classes	Lectures practical classes
i ype of classes	
Type of semester	Test
control	

Discipline	Methods and means of measuring physical quantities
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian
Department	Electromechanical equipment of energy-intensive industries, IEE
Requirements for the	The discipline "Methods and means of measuring physical quantities" is taught
beginning of the study	on the basis of knowledge and skills acquired by students during the study of
	such disciplines as "Methods of research, formation and management of
	intelligent energy systems and complexes", "Unconventional and renewable
	energy sources in power systems and electrical complexes", "Monitoring, control
	and protection of electric power systems and electrotechnical complexes",
What will be studied	The subject of study of the discipline "Methods and means of measuring physical
	quantities" is the formation of theoretical knowledge and practical skills in
	metrology as a scientific basis for measuring equipment, the level of knowledge
	about methods of measuring technological parameters and signals, principles of
	modern systems and automatic control devices during experimental research
Why it is interesting /	The study of the discipline will allow specialists in the field of power engineering,
necessary to study	electrical engineering and electromechanics to use the acquired knowledge to
	solve scientific problems of varying complexity
Why you can learn	The subject of the initial discipline is:
(learning outcomes)	- Electromechanical measuring transducers and devices.
	- Electronic analog devices.
	- Digital measuring instruments.
	- Measurement of magnetic quantities.
	-Features of measurement of non-electric quantities.
	- Measurement of non-electrical quantities.
	- Microprocessor systems in measuring technology.
	- Information and measuring systems.
How to use the	The result of studying the discipline is the formation of students' abilities:
acquired knowledge	- process measurement results, detect and eliminate systematic errors, plan and
(compotencies)	make fundamental decisions regarding the measurement of physical quantities
(competencies)	- make fundamental decisions regarding the measurement of physical quantities,
	- to calculate parameters of devices to develop pop-standard primary and
	combined converters for measurement of technological parameters
	- choose the method of measuring the parameter or signal, the device that
	implements this method and the measurement limits of the device
	- perform calibration and calibration, calculate the parameters of devices for
	partitioning to a new measuring range, diagnose the serviceability of devices and
	automatic control systems.
Information support	1. Syllabus, http://emoev.kpi.ua/author/Zstefan/iв
	2. Golovko DB Fundamentals of metrology and measurements / DB Golovko, KG
	Rego, Yu.O. Violinist К .: Либідь, 2001 248 с.
	3. Polishchuk ES Metrology and measuring equipment (edited by E. Polishchuk). /
	E.C. Polishchuk, MM Dorozhovets, VO Yatsuk and others Lviv: Beskyd BIT,
	2003 544p.
Type of classes	Lectures, practical classes
Type of semester	Test
control	

Discipline	Analysis and research of development of lightning discharge channel as
	dynamic system
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	4 ECTS credits
Language	Ukrainian, English
Department	Theoretical electrical engineering
Requirements for the	Basic knowledge of general physics, theoretical foundations of electrical
beginning of the study	engineering, industrial electronics, electromagnetic compatibility of technical
	means. Initial ideas about the main types and characteristics of electrical
	equipment in electrical and other systems and installations for which the
	electromagnetic effects of lightning discharges can be critical.
What will be studied	Fundamentals of atmospheric electric discharges of different types and related
	electromagnetic fields, currents and voltages. Dangerous effects from direct and
	indirect (in particular, induced) lightning actions. Statistics on lightning
	parameters and methods of recording their characteristics. Methods and means
	of protection of buildings, electrical systems and equipment from hazardous
	effects associated with lightning discharges. Human and animal safety issues.
	Normative documents on lightning protection and means of protection of
	buildings, power and electronic equipment. Protection of electrical networks,
	data transmission systems. Features of protection of overhead and cable power
	lines. Selection and application of protective devices to limit overvoltages and
	high currents. Lightning rods. Grounding systems. Examples of lightning
	protection of various objects. Practical development of lightning protection
	systems for various objects, selection of components.
Why it is interesting /	Buildings, electrical systems, people, various structures, installations and
necessary to study	equipment in the conditions of thunderstorm activity are exposed to the danger
	associated with various effects of lightning. There is a special danger for
	expensive station equipment in the energy sector, oil refining facilities,
	explosives-related industries, and modern electronic devices that are sensitive to
	even minor electromagnetic influences. Therefore, most facilities, electrical and
	other engineering networks, equipment in almost all industries require the
	development and installation of protection systems against direct and indirect
	lightning.
(learning outcomes)	Focus on issues of protection against the dangerous effects of lightning for
(learning outcomes)	are important for many specialties and specializations. Perform practical
	development of lightning protection systems, reasonably select the possesant
	components for its implementation
How to use the	Access bazards accessibled with lightning impacts on various facilities (including
now to use the	Assess fidzards associated with fightning impacts of various facilities (including
acquired knowledge	protection systems for various objects, in accordance with current regulations
(competencies)	Perform calculations of lightning protection systems and reasonably choose the
leomperencies	components of these systems and surge protection devices in electrical systems
Information support	Syllahus teaching materials (manuals presentations for lectures atc.)
	synabus, reaching materiais (manuais, presentations for rectures, etc.),
Type of classes	Lectures practical classes
Type of camestor	Tost
control	
CONTROL	

Discipline	Application of power electronics in active power distribution systems
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	3 ECTS credits
Language	Ukrainian, English
Department	Power supply
Requirements for	The course is based on the knowledge gained in the study of such disciplines as:
the beginning of	"Power electronics systems and controls in the power industry", "System analysis of
the study	complex systems of electricity supply to consumers", "Electrical networks and
	systems", "Electricity distribution systems and control", "Intelligent technologies in
	power supply systems".
What will be	General characteristics, principles of work and prospects of involvement of means of
studied	power electronics at construction and management of functioning of active systems
	of distribution of electric energy. Features of the use of power electronics devices to
	increase the reliability of power supply, ensure the quality of electricity, reactive
	power compensation and control the flow of active power (soft open points
	technology) in order to minimize electricity losses.
Why it is	The study of the discipline will allow: to acquire knowledge about the construction,
interesting /	principles of operation and features of the use of power electronics in distribution
necessary to study	networks; gain the ability to justify the location of these tools and master the
	methods of rational management of their work to ensure optimal modes of
	distribution and consumption of electricity, taking into account a set of technical and
	economic criteria.
Why you can learn	Perform simulation modeling of distribution networks with integrated in them
(learning	various dispersed means of energy generation and storage and equipped with
outcomes)	modern power electronics devices, use modern methods of optimization and
	decision making in centralized and decentralized control of active power distribution
How to use the	The received knowledge will allow to carry out the complex recearches connected
How to use the	with optimum use of means of power electronics in the conditions of wide
knowledge and	introduction of renewable energy sources in distribution networks to operate modes
skills	of systems of distribution of the electric nower: use the experience gained in the use
(competencies)	of power electronics to improve the efficiency and quality of power supply in the
(competencies)	design reconstruction development of power distribution systems; set and solve
	research tasks in these areas: to ensure the quality of scientific research and
	compliance with the rules of academic integrity in the implementation of scientific
	and pedagogical activities.
Information	Syllabus, teaching materials (manuals, presentations for lectures, etc.), standards.
support	
Type of classes	Lectures, practical classes.
Type of semester	lest
control	

Discipline 3 for study in the second year

Discipline	Monitoring and diagnostics of electric power systems
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	4 ECTS credits
Language	Ukrainian
Department	Electrical networks and systems
Requirements for the	The study of the discipline is based on knowledge of the following disciplines:
beginning of the study	"Methods of research, formation and management of intelligent energy systems
	and complexes", "Fundamentals of the theory of electromagnetic field and
	processes", "Unconventional and renewable energy sources in power systems
	and electrical complexes", "Monitoring, control and protection of electric power
	systems and electrotechnical complexes ".
What will be studied	General characteristics of monitoring in the power industry. Algorithms and
	measuring channels of monitoring in the power system. Information and
	diagnostic complexes.
Why it is interesting /	The study of the discipline will allow to professionally monitor the modes of
necessary to study	operation of AC networks, diagnose the state of electrical installations of
	electrical networks; analysis of monitoring parameters of electric power systems
	and networks, normative bases of monitoring, bases of monitoring
	measurement, organization of monitoring software and hardware.
Why you can learn	Monitor modes of operation of AC networks; perform diagnostics of the state of
(learning outcomes)	electrical installations of electrical networks; analysis and conversion of
	measured values by monitoring mode parameters.
How to use the	Evaluate and analyze monitoring objects, monitoring indicators, monitoring
acquired knowledge	factors and monitoring indicators; use software and hardware for monitoring
and skills	and diagnostics of electrical networks.
(competencies)	Develop structural schemes and algorithms for monitoring the parameters of
	power systems and networks, plan and perform monitoring of operating
	parameters of AC systems and tangential intersystem directions using modern
	software and hardware, understand the general principles and methods of
	engineering, as well as methodology for monitoring and diagnostics. In their own
	research in the field of electrical engineering and in teaching practice.
Information support	Syllabus of discipline,
Town of classes	https://classroom.google.com/c/WHUXNDQUWZY5NHZ?cjc=inpant5
i ype of classes	Lectures
Type of semester	Examination
control	

Discipline	Methods of analysis and research of complex dynamical systems
Higher education	Third (educational and scientific)
degree	
Year	2nd year
Number of credits	4 ECTS credits
Language	Ukrainian
Department	Power system automation
Requirements for the	The course is based on the knowledge gained by students in the study of courses
beginning of the study	"Theoretical foundations of electrical engineering", "Electrical machines",
	"Electrical networks and systems", "Transients in power engineering", "Theory of
	automatic control"
What will be studied	Scientific principles on methods, organizational and technological measures of
	sciencific research in the field of complex dynamic systems, methods of system
	systems, principles and methods of control in complex control systems
Why it is interesting /	Development of understanding of the essence of methods of mathematical
necessary to study	modeling and optimization of complex technical systems, obtaining skills of
	construction and research of models that describe complex technological
	processes; development of abilities to apply methods of system analysis,
	synthesis and control technologies for conducting research in the field of electric
	power.
Why you can learn	Gain an understanding of the concept of complex systems; Identify the
(learning outcomes)	parameters of management models; Ability to make scientifically sound
	decisions based on methods of systems analysis and management theory; Ability
	to develop methods of modeling, analysis and technology of synthesis of
	processes and systems in the field of technical systems; Apply the necessary
	methods of scientific research in the development of scientific papers; use
	the process of propaging a discertation; to carry out approbation and
	implementation of research results in practice: have the skills to find
	independent solutions to scientific problems: choose topics for scientific work.
How to use the	Ability to perform original research, to achieve scientific results that create new
acquired knowledge	knowledge in the field of management of production and distribution of
and skills	electricity; ability to present and discuss orally and in writing the results of
(competencies)	scientific research in Ukrainian and English; ability to solve scientific problems of
	increasing the reliability and efficiency of management, protection and
	automation of power systems, due to the need to ensure sustainable
	development of the state; ability to identify, set and solve research tasks in the
	field of electricity generation and distribution management, evaluate and ensure
	the quality of research; ability to adhere to the ethics of research, as well as the
	rules of academic integrity in research and scientific and pedagogical activities.
Information support	1.Sylabus.
	2. Fundamentals of control theory in simple and complex systems: a textbook /
	3 Klimenko IS Systems theory and system analysis / Klimenko IS_ M · Pussian
	New University $2014 - 264$ n
	4. Modeling and analysis of dynamic systems Charles M. Close and Dean K
	Frederickand Jonathan C. Newell-3rd ed.
	5. Modeling and Analysis of Dynamic Systems, Second Edition / Ramin S.
	Esfandiari, Bei Lu, 2014, 558p.
Type of classes	Classes are held in the form of lectures using demonstration material. Lectures
1	

	are informative and problematic.
Type of semester control	Examination

Discipline	Promising technologies for combined use of renewable energy sources
Higher education	Third (educational and scientific)
degree	
Year	2nd year
Number of credits	4 ECTS credits
Language	Ukrainian
Department	Renewable energy sources
Requirements for the	The course is based on the knowledge gained by students in studying the course
beginning of the study	of integrated use of RES.
What will be studied	Scientific principles on methods, organizational and technological measures of
	scientific research in the field of renewable energy in relation to systems with
	integrated application of RES.
Why it is interesting /	Formation of a system of abilities to set and solve complex scientific problems
necessary to study	during research and innovation activities in the field of renewable energy.
Why you can learn	Apply special methods when performing research; organize and conduct
(learning outcomes)	research in the process of preparing a dissertation; to carry out approbation and
	implementation of research results in practice; have the skills to find
	independent solutions to scientific problems.
How to use the	Ability to perform original research, achieve scientific results that create new
acquired knowledge	knowledge in the field of renewable energy, and use the acquired knowledge for
and skills	professional activities; ability to solve scientific problems to increase the
(competencies)	reliability and efficiency of energy systems and complexes focused on
	tasks in the field of renewable energy, evaluate and ensure the quality of
	research: ability to adhere to the othics of research, as well as the rules of
	academic integrity in research and scientific and nedagogical activities
Information support	1 1 Syllahus
	2. 2. Unconventional and renewable energy sources / Kudrva SO -
	Textbook Kyiv: NTUU (KPI), 2012. – 495p.
	3. 3. Renewable energy sources / Ed. S.O. Curls Kyiv: IVE NASU, 2020
	392 p.
	4. 4. Velichko SA Energy of the environment of Ukraine (with electronic
	maps). Educational and methodical manual for undergraduates
	Kharkiv: VNKarazin Kharkiv National University 2003 52p.– 2006
	280 p.
	5. 5. Alternative energy sources of Ukraine: textbook. manual / IOKovalyov,
	OV Town Hall Sumy: SSO Publishing House, 2015 201 p.
	autonomous facilities. Ekat .: UrFU, 2015. 226 p.
	7. 7. Billington R., Allan R. Evaluation of the reliability of power systems;
	lane. with English. Moscow: Energoatomizdat, 1988. 287 p.
	8. 8. Lukutin BV, Muravlev IO, Plotnikov IA Power supply systems with wind
	and solar power plants: a textbook - Tomsk: Tomsk Polytechnic
	Publishing House. University, 2015 128 p.
	9. 9. Complex use of renewable energy sources [Electronic resource]: a
	course of lectures for students, specialty 141.
	10 Additional:
	11. 1. DSTU N B B.1.1-27: 2010 Protection against dangerous geological
	processes, harmful operational influences, fire. Construction climatology

	 Kyiv: Ministry of Regional Development of Ukraine, 2011123p. 12. 2. SOU NEK 341.001: 2019. Requirements for wind and solar power plants in their operation in parallel with the unified energy system of Ukraine Kyiv, 2019 33 p. Theory of probabilities and its engineering applications: a textbook / ES
	Wentzel, L.A. Ovcharov 5th ed., Р Москва: ЮСТИЦИЯ, 2018 480 с.
Type of classes	Classes are held in the form of lectures using demonstration material. Lectures are informative and problematic.
Type of semester control	Examination

Discipline	Intelligent methods for assessing the technical condition and service life of
	electrical equipment.
Higher education	Third (Doctor of Philosophy)
degree	
Year	2
Number of credits	4 ECTS credits
Language	Ukrainian
Department	Renewable energy sources
Requirements for the	General knowledge of computer science, theory of transients in the power
beginning of the study	system,, basics of operation and modes of operation of electrical equipment and
	power plants, control modes of power plants, theory of electrical machines and
	transformers, electrical devices, basics of relay protection and automation of
	power systems, theory of power system reliability,
What will be studied	Methodical bases of a complex estimation of a technical condition of the electric
	equipment. Problems and tasks of assessment of vehicles of modern electrical
	equipment, existing strategies for maintenance and repair of electrical
	equipment. Assessment of the technical condition of electrical equipment on a
	set of controlled parameters. Generalized model of equipment resource
	determining the count operational factors. Deterministic models for
	determining the spent resource of power and switching equipment of power
	systems. Modern concepts of mornation systems for diagnostics of electrical
	tochnical diagnostics of electric equipment of power systems. Tasks of tochnical
	diagnostics in electric power industry. Features of assessment of technical
	condition of electrical equipment. Intelligent technologies in the tasks of
	diagnosing vehicles of electrical equipment. Application of fuzzy set theory fuzzy
	logic fuzzy knowledge bases for vehicle evaluation. Basic concepts of artificial
	neural networks (ANN) and their use in the problems of identification of
	electrical equipment. Segmentation of electrical equipment by cluster analysis.
	Adaptation of neuron-fuzzy models of evaluation of TC electrical equipment.
	Setting of fuzzy knowledge bases for state classification tasks, application of
	genetic algorithms for setting up linguistic models of evaluation of TC equipment
	and training of neural networks, algorithms and methods of training artificial
	neural networks Setting up fuzzy knowledge bases Mamdani and Sugeno.
	Modern methods of forecasting the vehicle and the resource of electrical
	equipment Problems and tasks of ensuring reliable forecast of the vehicle and
	the resource of electrical equipment of power systems, Characteristics of
	existing traditional forecasting methods, Forecasting the resource and mode
	parameters of power facilities using ANN. Linguistic models of assessment of
	vehicles and resource of power and switching equipment of power systems,
	Formation of a hierarchical structure of a fuzzy logical conclusion about the
	technical condition of electrical equipment,
Why it is interesting /	Objectively existing today, a significant level of wear of electrical equipment of
necessary to study	modern power systems leads to an increase in the probability of their failure, the
	risk of accidents in the UES, an important task is the correct choice of
	management strategy electrical equipment based on the use of modern
	information technology, making optimal decisions to extend its service life or
Why you can be an	replacement.
(loorning outcomes)	select and create new models for assessing the technical condition and service
(learning outcomes)	me or electrical equipment using modern IT-technologies .; to form a strategy for managing the technical condition of equipment, taking into account the results
	inanaging the technical condition of equipment, taking into account the results
	of uragriosis; Develop models of electrical equipment failures for the analysis of

	regime reliability and risks in the UES.
How to use the	the graduate student will be able to:
acquired knowledge	1. Have a modern methodology for comprehensive assessment of vehicles and
and skills	strategies for maintenance and repair of electrical equipment;
(competencies)	2. To choose the most informative diagnostic signs of a condition of the electric
	equipment, to carry out formalization of heuristic and expert information;
	3. Develop new models for assessing the technical condition of electrical
	equipment using modern information technology;
	4. Carry out the adaptation of linguistic models to real operating conditions;
	5Apply modern methods of forecasting the technical condition and resource of
	electrical equipment to select the optimal strategy for its operation.
Information support	Curriculum and working programs of the discipline, RSO, teaching materials
	(lecture notes, computer workshops, guidelines for studying the discipline and
	computer workshops).
Type of classes	computer workshops, modular control work, home control work.
Type of semester	Examination
control	

Discipline	Diagnosis and optimization of operation of electromechanical energy converters
	and complexes based on them
Higher education	Third (educational - scientific)
degree	
Year	2nd year, spring semester
Number of credits	90 hours / 3 ECTS credits
Language	Ukrainian
Department	Electromechanics
Requirements for the	Availability of knowledge acquired by a PhD student while studying at the first
beginning of the study	(bachelor's) and second (master's) levels of higher education. In particular, the
	availability of knowledge gained during the study of disciplines "Diagnostics and
	maintenance of electric machines", "Electric machines of automation systems".
	To successfully master the discipline, the student must have a "Foreign language
	for scientific activities", as much of the information is presented in the scientific
	literature in English.
What will be studied	Postgraduate students study modern approaches to improving the functioning of
	electromechanical complexes, development of the latest elemental base with
	the participation of digital computers, electronic digital converters and
	development of methods for diagnosing the main components of the whole
	complex.
Why it is interesting /	The practice of operation of electromechanical complexes is an important task of
necessary to study	the national economy of Ukraine. Mastering the principles of increasing the level
	of operation of complex technical systems based on electromechanical energy
	converters, requires a transition to a nigner level of awareness of the specialty
	141 Electric power, electrical engineering and electromechanics. The need for
	specialists of high scientific level to ensure the reliability of electromechanical
	complexes using modern diagnostic methods, causes the state sheed for
Why you can learn	After graduation, the PhD graduate acquires knowledge of modern methods of
(learning outcomes)	diagnosing electromechanical equinment and complex systems. Master the
(learning outcomes)	structure of modern electromechanical complexes, which consist of
	electromechanical energy converters IGBT inverters and digital electronics
How to use the	The knowledge acquired during the study of the discipline can be used in the
acquired knowledge	development of new methods and hardware for diagnosing complex
and skills	electromechanical systems, reasonably compose and build complexes based on
(competencies)	electromechanical energy converters and increase the efficiency of their
(,	operation
Information support	Distance course in the Moodle system: https://do.ipo.kpi.ua/login/index.php
Type of classes	Day
Type of semaster	Offset / MCP / PGP
control	
control	

Discipline	Methods for studying the stability of adaptive observers
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	4 ECTS credits
Language	Ukrainian
Department	Automation of electromechanical systems and electric drive FEA
Requirements for the	General knowledge of mathematics, theory of automatic control, English
beginning of the study	
What will be studied	The subject of the discipline "Methods of studying the stability of adaptive observers" is to study the scientific basis of modern stability theory in adaptive control problems to build modern electric drives and electromechanical systems, electrical systems and systems with adaptive and robust properties to parametric and coordinate perturbations. The course includes the study of basic principles of construction of algorithms for identification of parameters of control objects in electromechanics and electrical engineering, estimation and compensation of disturbances by means of adaptive observers. It is supposed to consider methods of proving stability on the basis of Lyapunov's theory in systems with fully and partially measurable state vector. The principal problems on automatic determination of inductances and active resistances of typical links, windings of electric machines, identification of moments of inertia, estimation of perturbations, construction of state observers for estimation of
Martin in in the second in a l	flux couplings, currents, angular velocity will be considered.
Why it is interesting / necessary to study	The study of this discipline is important for the development and study of new adaptive electromechanical and electrotechnical systems based on adaptive observers. The current level of requirements for automation systems can not be met without the provision of adaptation functions, which determines the relevance of the study of the discipline.
Why you can learn	To study the basics of the theory of adaptive and robust control, its application
(learning outcomes)	for analytical synthesis of adaptive observers of advanced electromechanical systems of the next generations. It is assumed to determine the methods of proving stability in systems with fully and partially measurable state vector.
How to use the	The acquired knowledge will help the future scientist to freely create modern
acquired knowledge	electromechanical automation systems for a wide range of technological
and skills	applications with the properties of adaptation to parametric perturbations, as
(competencies)	well as in the conditions of partial measurement of state variables. To be a
	responsible executor in scientific institutions for the development and research
-	of the latest complex automatic control systems.
Information support	Curriculum and working programs of the discipline, RSO, English-language
The states	sources.
i ype of classes	Lectures and practical classes.
Type of semester control	Examination

Discipline	Methods of pattern recognition in electrical systems
Higher education	Third (educational and scientific)
degree	
Year	2nd year (4)
Number of credits	4 ECTS credits
Language	Ukrainian
Department	Automation of control of electrotechnical complexes, IEE
Requirements for the	The discipline is taught on the basis of knowledge and skills acquired by students
beginning of the study	during the study of credit modules of such disciplines as "Higher Mathematics",
	"Mathematical Methods of Optimization", "Computer Science and
	Programming", "Statistical Modeling of Electromechanical Systems", etc.
What will be studied	Pattern recognition methods will detect, predict, classify faults and make
	decisions that are important functions integrated into the implementation of
	protection schemes to develop a more intelligent transmission system.
	Electromechanical, electronic, digital, digital relays, and today intelligent relays
	are a trend in the field of protection of power systems and, in some cases,
	protection schemes of power lines. The decision model contains an idea of the
	nonlinearity of the mapping between the input vector and the output target.
	Therefore, the method of pattern recognition is considered one of the most
	important milestones in complex and nonlinear problems, such as the protection
	of power systems.
Why it is interesting /	To form in young scientists the knowledge and practical skills of using pattern
necessary to study	recognition theory in the field of power engineering, electrical engineering and
	electromechanics. The study of the material of this discipline is exclusively
	focused on the widespread use of computer technology and programming.
Why you can learn	The result of studying the discipline is the formation of students' abilities:
(learning outcomes)	-fault detection,
	- fault detection with high registeries
	- Tault detection with high resistance,
	- Detection of symmetrical faults during power oscillation and detection of
How to use the	After studying the source, young scientists are able to produce new ideas
now to use the	(creativity): able to search, process and analyze information from various
acquired knowledge	curces: are able to properly use specialized software packages to classify faults
(compotencies)	in electrical systems: able to correctly select and use the optimal functions of
(competencies)	in electrical systems, able to correctly select and use the optimal functions of
	correctly choose and use image recognition methods in control systems to
	achieve the ontimal solution
Information support	1 https://wikipedia.org
	2 Yagang7hang Yutaoliu Xiaozhe "Faultnattern recognition in nower system
	engineering." 2009. Chengdu, 2009. pp. 109-112. doi: 10.1109 /
	ICIMA.2009.5156572.
	3. Gorelik AL,. Recognition methods / AL Gorelik, VA Skripkin - 4th ed M .:
	Высшая школа, 1984, 2004 262 с.
	4. Fomin Ya. A. Pattern recognition: theory and applications 2nd ed M .:
	ФАЗИС, 2012 429 с
Type of classes	Lectures, practical classes
Type of semester	Examination
control	

Discipline	Identification of nonlinear dynamical systems
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	4 ECTS credits
Language	Ukrainian
Department	Electromechanical equipment of energy-intensive industries, IEE
Requirements for the	The discipline "Identification of nonlinear dynamical systems" refers to the cycle
beginning of the study	of training a doctor of philosophy, based on knowledge and skills of fundamental
	sections of mathematics, physics, electrical engineering, electromechanics and
	mechatronics, programming, mathematical modeling of electromechanical
	systems and others taught in the training cycle. chosen profession.
What will be studied	Structure, functions and criteria for determining nonlinear electromechanical
	and mechatronic dynamical systems.
	Identification algorithms based on Runge-Rutt, Euler methods for solving
	problems of research of discrete models of nonlinear dynamic processes and
	algorithms for identification of continuous models based on the finite difference
	Modern methods of programming in MathCAD and AutoCAD systems (in
	Autol ISP) solutions of problems of identification of nonlinear dynamic systems
Why it is interesting /	The discipline lays the foundations for deepening knowledge for research within
necessary to study	the tasks facing the research university: modeling of electromechanics for
,,	research and development work in preparation for the dissertation of a doctor of
	philosophy with the use of mathematical modeling; CAD - technologies, modern
	information systems and databases, software, multimedia systems and Internet
	technologies, design methodologies and CAD elements of nonlinear dynamic
	systems.
Why you can learn	The result of studying the discipline is the formation of abilities:
(learning outcomes)	- to form calculation schemes and discrete and continuous models of nonlinear
	dynamic processes in the field of electromechanics and mechatronics;
	- to study the motion of elements of nonlinear discrete models by the method of
	phase coordinates;
	- to develop and apply identification algorithms based on Runge-Rutt and Euler
	nocesses.
	- to develop and apply algorithms for identification of continuous models based
	on the finite difference method:
	- to use modern programming methods in MathCAD and AutoCAD (AutoLISP)
	systems for solving problems of identification of nonlinear dynamic systems.
How to use the	In order to conduct research on the topic of the dissertation, to analyze dynamic
acquired knowledge	systems, determine their complexity and justify the choice of methods for their
and skills	identification.
(competencies)	To determine the optimal parameters and characteristics of the studied
	nonlinear dynamical system, apply numerical simulation methods using the finite
	difference method and integrate differential equations into partial derivatives of
	the hyperbolic type.
	For the synthesis of structural elements of nonlinear dynamic systems, use
	methods of forming structural and computational schemes, their mathematical
	analogues and methods of identification with programming in modern
Information outpatt	Information systems.
information support	Syllabus, https://do.lpo.kpl.ua/course/view.php?ld=2522

Type of classes	Lectures, practical classes
Type of semester control	Examination

Discipline	Mathematical modeling of systems of protection of electrotechnical complexes
	against electromagnetic effects of lightnings
Higher education degree	Third (educational and scientific)
Year	2
Number of credits	4 ECTS credits
Language	Ukrainian, English
Department	Theoretical electrical engineering
Requirements for the	Basic knowledge of general physics, theoretical foundations of electrical
beginning of the study	engineering, industrial electronics, electromagnetic compatibility of technical
	means. Initial ideas about the main types and characteristics of electrical
	equipment in electrical and other systems and installations for which the
	electromagnetic effects of lightning discharges can be critical.
What will be studied	Methods and means of registration of lightning characteristics: fact, place and
	time of occurrence of atmospheric electric discharges and shocks, parameters of
	pulse and long currents, charges, electromagnetic fields, etc. Lightning discharge
	models to justify the choice of the necessary algorithms and characteristics of
	automated systems and means of registration. Registration of lightning
	characteristics on tail buildings, power lines, wind power plants and other
	racilities. Lightning activity warning systems. Remote lightning detection
	systems. Research with artificially initiated lightning. Regulations. Analysis of
M/hit is interesting /	these registration systems and recommendations for their use.
why it is interesting /	reliable data on lightning activity and the characteristics of the various
necessary to study	components of lightning discharges. It is important to have such data for cortain
	types of objects and regions. They can be obtained by automated registration of
	lightning on individual huildings and using remote systems
Why you can learn	Orient in methods and means of registration of lightning characteristics. Get
(learning outcomes)	acquainted with the models of lightning discharge, which are used to develop
(their registration systems and protection systems. Analyze data from lightning
	detection systems and use them to develop lightning protection systems for
	various objects.
How to use the	Reasonably develop or choose means and systems for registration of lightning
acquired knowledge	characteristics. Analyze data from lightning detection systems and use them to
and skills	develop lightning protection systems for various objects (direct and indirect
(competencies)	actions).
Information support	Syllabus, teaching materials (manuals, presentations for lectures, etc.),
	standards.
Type of classes	Lectures, practical classes.
Type of semester control	Test

Discipline	Application of information technologies in active systems of distribution of electric
	energy
Higher education	Third (educational and scientific)
degree	
Year	2
Number of credits	4 ECTS credits
Language	Ukrainian, English
Department	Power supply
Requirements for	The discipline is based on the knowledge received at studying of such disciplines as:
the beginning of	"Information technologies in power supply systems", "System analysis of difficult
the study	systems of providing consumers with electric energy", "Electric networks and
	systems", "Systems of distribution of electric energy and their management",
	"Intelligent technologies in power supply systems "," Relay protection systems and
	automation of power supply control ".
What will be	General characteristics, principles of work and prospects of involvement of modern
studied	information systems in construction and management of functioning of active
	systems of distribution of electric energy. Features of the use of information systems
	for modeling the modes of distribution networks in the conditions of wide
	involvement of dispersed means of energy generation and accumulation.
Why it is	The study of the discipline will allow: to acquire knowledge about the general
interesting /	principles of construction, operation and features of the use of information systems
necessary to study	in distribution networks; gain the ability to justify the location of these tools and
	master the methods of rational use of information to ensure optimal modes of
	distribution and consumption of electricity.
Why you can learn	Perform simulation modeling of distribution networks with integrated in them
(learning	various dispersed means of energy generation and storage and equipped with
outcomes)	modern information and measurement systems, use modern methods of
	optimization and decision making in centralized and decentralized control of active
11. I	power distribution systems based on the received.
How to use the	The acquired knowledge will allow to carry out complex researches connected with
acquired	optimum placement and use of modern information-measuring and control
chille	distribution notworks to use the received data to manage modes of newer
(competencies)	distribution systems for efficiency and quality of nower supply: set and solve research
(competencies)	tasks in these areas: to ensure the quality of scientific research and compliance with
	the rules of academic integrity in the implementation of scientific and pedagogical
	activities
Information	Syllabus, teaching materials (manuals, presentations for lectures, etc.), standards
support	
Type of classes	Lectures, practical classes.
Type of semester	Test
control	