Лабораторна робота № 41

ДОСЛІДЖЕННЯ КОТУШКИ З ФЕРОМАГНІТНИМ ОСЕРДЯМ

Мета роботи

Ознайомлення із впливом режиму роботи котушки з феромагнітним осердям на її еквівалентні параметри. Визначення впливу режиму роботи котушки на величину потужності втрат в міді і сталі. Побудова схеми заміщення котушки з феромагнітним осердям та її векторної діаграми.

Підготовка до роботи

Вивчити рекомендовану літературу, ознайомитися з методичними вказівками до роботи, описом лабораторної установки, робочим завданням, підготувати протокол звіту та відповісти на наступні запитання:

1. Чим зумовлений нелінійний зв'язок між струмом і потокозчепленням у котушці з феромагнітним осердям?

2. Як розподіляється потокозчеплення у котушці з феромагнітним осердям?

3. Що таке індуктивність розсіювання і чому вона лінійно пов'язана зі струмом в котушці?

4. Як визначити напругу U_0 на котушці, що намагнічується?

5. У чому полягає сутність явища гістерезису?

6. Що представляють собою вихрові струми?

7. Які види теплових втрат існують у магнітопроводі котушки, від чого і як вони залежать?

8. Що являє собою кут магнітних втрат у котушці і чим він визначається?

9. Як виглядають схеми заміщення котушки з феромагнітним осердям?

10. Які параметри котушки змінюються зі зміною вхідної напруги?

11. Як будується векторна діаграма котушки з феромагнітним осердям?

Опис лабораторної установки

До складу лабораторної установки входять: котушка з феромагнітним осердям з регульованим повітряним проміжком і двома обмотками; два вольтметри електромагнітної системи; амперметр електромагнітної системи; ватметр електродинамічної системи; набір неферомагнітних пластин; регульований перетворювач величини змінної напруги (лабораторний автотрансформатор АТ).

Порядок виконання роботи

1. Занести у табл. 41.1 паспортні дані котушки: число витків головної w₁ і додаткової w₂ обмоток, площу перетину осердя S.

Таблиця 41.1

w_1	<i>W</i> ₂	S (см ²)
145	145	31,0

2. Скласти електричне коло згідно схеми рис. 41.1.

Рис.41.1

3. При незмінній частоті мережі живлення ($f = 50 \ \Gamma \mu$) виміряти напругу на головній котушці U_1 , додатковій U_2 , потужності P_1 та P_2 , змінюючи струм у головній котушці в межах 1,0; 1,5...5А при величині повітряного проміжку:

- a) δ=0;
- б) δ=2 мм.

Результати вимірів занести до табл. 41.2.

Вимір										
δ (мм)	$U_{l}(\mathbf{B})$	I (A)	<i>Р</i> ₁ (Вт)	<i>U</i> ₂ (B)	Р ₂ (Вт)					
δ=0		1,0								
		1,5		-						
		2,0								
		2.5								
		3,0								
		3.5								
		4,0	-							
		4.5	-							
		5,0								
δ=2		1.0								
		1.5								
		2.0								
		2.5								
		3.0								
		3.5								
		4.0								
		4.5		+						
		5.0	+	+						

Таблиця 41.2

4. При незмінних напрузі U_2 котушки і частоті мережі f виміряти струм I, потужності P_1 та P_2 , напругу U_1 котушки, змінюючи повітряний проміжок від 1 до 5 мм. Значення U_2 відповідає напрузі, для якої при повітряному проміжку 5 мм амперметр покаже струм $I_A = 5A$.

Результати вимірів занести до табл. 41.3.

Таблиця 41.3

Вимір										
δ (мм)	$U_{l}(\mathbf{B})$	$I(\mathbf{A})$	<i>Р</i> ₁ (Вт)	$U_2(\mathbf{B})$	P_2 (BT)					
5										
4										
3										
2										
1										

Обробка результатів експерименту

1. За даними дослідів п.За і Зб обчислити параметри котушки Z, R, X, Z₀, R₀, X₀, X_s, G₀, B₀, I_a, I_p, Cos φ , α ; результати обчислень занести до табл. 41.4. Побудувати залежності Z= $f(U_0)$, Z₀ = $f(U_0)$, R₀ = $f(U_0)$, X₀= $f(U_0)$, Cos φ = $f(U_0)$, $I=f(U_0)$.

2. За отриманими даними п.4 обчислити Z, R, X, $Z_{0,}$ R₀, X₀, Cos φ ; результати обчислень занести до табл. 41.5. Побудувати залежності Z=f(δ), Z_0 =f(δ), R₀=f(δ), X₀= f(δ), I=f(δ), Cos φ = f(δ).

	Обчислення									
δ (мм)	Ζ	R	Х	Z ₀	R ₀	X_0	Cosφ	R _M	X _s	
5										
4										
3										
2										
1										

Таблиця 41.5

3. Побудувати схему заміщення і векторні діаграми котушки з феромагнітним осердям для одного з дослідів п.3а та 3б.

4. Зробити і записати у протокол звіту висновки з виконаної роботи.

Таблиця 41.4

	Обчислення													
δ	U ₀	Z	R	X	R ₀	Z ₀	X_0	X _s	G ₀	B_0	Ia	Ip	Cosφ	α
)=0														
Ω.														
δ=														

Методичні вказівки

Котушка з феромагнітним осердям є нелінійним елементом. Це пов'язано з тим, що магнітна проникність (μ) для феромагнетику не є постійною величиною і залежить від значення магнітної індукції в осерді. Нелінійна залежність *B*(*H*) задає нелінійну залежність між потокозчепленням Ψ і струмом *I*, що буде впливати на величину індуктивності котушки з феромагнітним осердям.

На основі другого закону Кірхгофа запишемо:

$$u = Ri + \frac{d\psi}{dt} = Ri + \frac{d\psi_s}{dt} + \frac{d\psi_0}{dt} = Ri + L_s \frac{di}{dt} + w \frac{d\Phi_0}{dt}, \qquad (41.1)$$

де: *R* – активний опір обмотки котушки;

 $\Psi = \Psi_s + \Psi_0$ – загальне потокозчеплення, яке складається з основного потокозчеплення Ψ_0 і потокозчеплення Ψ_s .

Основне потокозчеплення обумовлене основним магнітним потоком Φ_0 , який замикається по осердю $\Psi_0 = w\Phi_0$, де *w* – число витків котушки.

Потоки розсіювання замикаються частково в повітрі, зв'язок між потокозчепленням розсіювання і струмом можна вважати лінійним і виразити через співвідношення $\Psi_s = L_s i$, де L_s – індуктивність розсіювання.

Якщо до котушки прикласти синусоїдну напругу, то через нелінійну залежність $\Psi(i)$, форма струму в котушці буде відрізнятися від синусоїдної. Однак, часто, у розрахунках таку несинусоїдну криву замінюють еквівалентною синусоїдною. Метод, заснований на такій заміні, називають методом еквівалентних синусоїд. Сенс такого підходу полягає у тому, що він дозволяє застосовувати для аналізу електромагнітних процесів комплексний метод розрахунку і будувати векторні діаграми.

Представимо рівняння (44.1) у комплексній формі:

$$\dot{U} = R\dot{I} + j\omega L_s \dot{I} + \dot{U}_0. \tag{41.2}$$

В останньому виразі напруга $\dot{U}_0 = j\omega \Phi_0$ обумовлена ЕРС самоіндукції, яка створена основним магнітним потоком в феромагнітному осерді. Діюче значення цієї напруги визначається за формулою:

 $U_0 = 4,44 f w \Phi_{0m} = 4,44 f w s B_{0m}$.

Враховуючи втрати в сталі, можна запропонувати дві еквівалентні схеми заміщення (рис. 41.2) котушки з феромагнітним осердям: послідовну (*a*) і паралельну (б).

В наведених вище схемах R_м – це активний опір обмотки на низьких частотах, який дорівнює омічному опору, тобто його можна визначити за законом Ома для постійного струму.

Реактивний опір $X_s = \omega L_s$ обумовлений магнітним потоком розсіювання. Активні втрати в осерді (втрати на гістерезис і вихрові струми) враховуються активною нелінійною провідністю G_0 в паралельній схемі, чи активним нелінійним опором R_0 в послідовній схемі заміщення.

Для визначення напруги U_0 , обумовленої основним магнітним потоком в феромагнітному осерді, використовується додаткова обмотка з числом витків $w_{2,}$ розміщена на тому ж осерді, що і основна. Вимірявши напругу на затискачах цієї обмотки U_2 і знаючи число витків w_1 і w_2 , можна розрахувати величину напруги U_0 : $U_0 = \frac{w_1}{w_2}U_2$ та амплітудне значення магнітної індукції

$$B_{0m} = \frac{U_0}{4,44 \, fws},$$

де s – площа поперечного перетину феромагнітного осердя котушки. Оскільки на лабораторній установці $w_1 = w_2$, відповідно $U_0 = U_2$.

Параметри послідовної схеми заміщення котушки визначаються з виразів:

$$Z = U_1 / I;$$
 $R = P / I^2$ $u R = Z \cos \varphi;$ $X = \sqrt{Z^2 - R^2};$ $X_s = X - X_0;$ $L_s = X_s / 2\pi f.$

Коефіцієнт потужності котушки $\cos \varphi = P/U_1I$.

Для розрахунку параметрів паралельної схеми заміщення котушки використовують наступні розрахункові величини:

$$I_a = P_{cm} / U_0; \ I_p = \sqrt{I^2 - I_a^2}; \ \alpha = arctg(I_a / I_p); \ G_0 = I_a / U_0; \ B_0 = I_p / U_0$$

В наведених вище виразах:

Z – повний опір котушки;

R – еквівалентний активний опір котушки;

Х- еквівалентний реактивний опір котушки;

 $Z_0 = U_0 / I$ – повний нелінійний опір намагнічувального контуру;

 $R_0 = P_2 / I^2$ – активний нелінійний опір, обумовлений вихровими струмами і явищем гістерезису;

 X_0 – реактивний нелінійний опір, який пов'язаний з процесами в осерді котушки $X_0 = \sqrt{Z_0^2 - R_0^2}$;

$$\varphi_0 = \arccos \frac{P_2}{IU_2}$$
 – кут зсуву між векторами U_0 та I ;

Ф – кут зсуву між струмом і напругою на вході котушки;

I_a – активна складова струму намагнічування, яка залежить від втрат в сталі осердя;

I_p – реактивна складова струму намагнічування;

*G*₀ – активна нелінійна провідність, яка враховує втрати в сталі осердя;

*B*₀ – реактивна провідність, яка відображає основну нелінійну частину індуктивності котушки, пропускаючи струм *I*_p, що забезпечує створення основного магнітного потоку;

 α – кут магнітних втрат або кут зсуву між вектором струму і вектором основного магнітного потоку $\alpha = \frac{\pi}{2} - \varphi_0$.

Пояснюючи характер зміни деяких залежностей, слід пам'ятати, що при зміні напруги мережі живлення U_1 чи величини повітряного проміжку осердя δ , опори R_0 і X_0 котушки не будуть залишатися постійними, а отже, буде змінюватися струм, потужність *P*, повний опір *Z*, коефіцієнт потужності. Так, наприклад, при дослідженні котушки при напрузі U, що змінюється, і незмінній частоті змінного струму f, з відомого співвідношення $U = 4,44 f w \Phi_m$ випливає, що максимальний магнітний потік Φ_m залежить від прикладеної до котушки напруги U. Тому втрати в осерді (втрати в сталі) при постійній частоті залежать від прикладеної напруги. Їх можна виразити так $P_{cm} = P_e + P_e$, де P_6 – втрати на вихрові струми, P_e – втрати на гістерезис.

Активний опір кола
$$R = R_{cm} + R_{M} = \frac{P_{e} + P_{e}}{I^{2}} + R_{M} = \frac{B_{m}^{2}}{I^{2}}(k_{e}f^{2} + k_{e}f) + R_{M}$$

Як бачимо, при постійній частоті характер зміни активного опору зрештою залежить від співвідношення $(B_m/I)^2$, у якому із збільшенням U максимальна індукція B_m росте спочатку швидше, ніж струм, а потім повільніше. Зазначена залежність зміни активного опору від напруги зображена на рис. 41.3.

Рис.41.3

Реактивний X і повний опір Z мають характер зміни, подібний до зміни R, і дещо відрізняються лише деяким зсувом максимумів. При побудові графіку залежності U(I) можна переконатися в тому, що він подібний по виду основної кривої намагнічування B(H) (при відсутності повітряного проміжку в осерді).

При зміні повітряного проміжку в осерді і незмінній величині вхідної напруги U_0 , на підставі залежності $U_0 = 4,44 fw \Phi_{0m}$ отримаємо, що при зміні величини зазору максимальна індукція не буде змінюватися, не змінюється й магнітна проникність сталі µ. При цьому магнітний опір кола котушки дорівнює:

$$R_{\rm MAZH} = \frac{l}{\mu S} + \frac{\delta}{\mu_0 S}$$

Як бачимо зі збільшенням зазору магнітний опір росте, а індуктивність

 $L = \frac{w\Phi}{i} = \frac{w}{i} \frac{iw}{R_{_{MAZH}}} = \frac{w^2}{R_{_{MAZH}}} - 3меншується. Залежність L(\delta) близька до$

гіперболічної. Оскільки активний опір R_0 котушки значно менший повного Z_0 , тому залежність $Z_0(\delta)$ можна вважати подібною залежності $L(\delta)$.

Характер залежності $\cos \phi = f(\delta)$ виявляється при розгляді виразу

$$\cos \varphi = \frac{P_{cm}}{UI} + \frac{P_{M}}{UI} = \frac{P_{cm}U}{U^{2}I} + \frac{P_{M}I}{UI^{2}} = G_{0}Z + \frac{R_{M}}{Z}$$

Перший доданок зі збільшенням δ зменшується, а другий збільшується. Спочатку, коли Z_0 ще досить велике, переважає перший доданок і зі збільшенням $\delta \cos \varphi$ зменшується. Надалі переважає другий доданок і $\cos \varphi$ збільшується.

Залежності $Z_0(\delta)$ й $\cos \varphi(\delta)$ показані на рис. 41.4.

Рис.41.4

Векторна діаграма для паралельної схеми заміщення зображена на рис. 41.5. Побудова починається з вектора основного магнітного потоку Φ_{0m} . Потім під кутом α в бік випередження проводиться вектор струму *I*, який в свою чергу розкладається на активну і реактивну I_p складові. Напруга U_0 випереджає магнітний потік на кут $\pi/2$. Далі, відповідно рівняння (41.2) будуємо падіння напруги на активному опорі обмотки (співпадає зі струмом за напрямком) та спад напруги на індуктивності розсіювання (випереджає струм на кут $\pi/2$). Напруга на затискачах котушки є векторною сумою трьох вказаних напруг.

Рис. 41.5.

Питання для самостійної роботи

- 1. Зняти осцилограму *i(t)* котушки.
- 2. Зробити гармонійний аналіз кривої *i(t)*.

<u>Література</u>

1. В.С. Бойко, В.В. Бойко, Ю.Ф. Видолоб, І.А. Курило та ін. Теоретичні основи електротехніки. Т2. Підручник. –Київ, НТУУ «КПІ». 2008. – 224 с.

2. Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники, Т2. Учебник. - Л.: Энергоиздат, 1981. - 536 с.

3. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей: Учебник. - М.: Энергоатомиздат, 1989. - 528 с.